In physical sciences, standard conditions for temperature and pressure are standard sets of conditions for experimental measurements, to allow comparisons to be made between different sets of data. The most used standards are those of the International Union of Pure and Applied Chemistry (IUPAC) and the National Institute of Standards and Technology (NIST) but are far from being universal standards. Other organizations have established a variety of alternative definitions for their standard reference conditions. The current version of IUPAC's standard is a temperature of 0 °C (273.15 K, 32 °F) and an absolute pressure of 100 kPa (14.504 psi)[1], while NIST's version is a temperature of 20 °C (293.15 K, 68 °F) and an absolute pressure of 101.325 kPa (14.696 psi).

In industry and commerce, standard conditions for temperature and pressure are often necessary to define the standard reference conditions to express the volumes of gases and liquids and related quantities such as the rate of volumetric flow (the volumes of gases and liquids vary significantly with temperature and pressure). However many technical publications (books, journals, advertisements for equipment and machinery) simply state "standard conditions" without specifying them, often leading to confusion and errors.

Sources and Citations Edit

  1. A. D. McNaught, A. Wilkinson (1997). Compendium of Chemical Terminology, The Gold Book, 2nd Edition, Blackwell Science. ISBN 0865426848. “Standard conditions for gases: Temperature, 273.15 K [...] and pressure of 105 pascals. IUPAC recommends that the former use of the pressure of 1 atm as standard pressure (equivalent to 1.01325 × 105 Pa) should be discontinued.” 

Ad blocker interference detected!

Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.